APP - Shrinking Arctic Sea Ice Means Scorching US Summers

Don Quixote

cancer survivor
Contributor
yes, humans are their own worst enemies

Thirty years of shrinking Arctic sea ice has boosted extreme summer weather, including heat waves and drought, in the United States and elsewhere, according to a study published today (Dec. 8) in the journal Nature Climate Change.
[h=2]Related Stories[/h]





The new study — based on satellite tracking of sea ice, snow cover and weather trends since 1979 — links the Arctic's warming climate to shifting weather patterns in the Northern Hemisphere's midlatitudes.
"The results of our new study provide further support and evidence for rapid Arctic warming contributing to the observed increased frequency and intensity of heat waves," said study co-author Jennifer Francis, an atmospheric scientist at Rutgers University in New Jersey. [Images of Melt: Earth's Vanishing Ice]
Weakened jet stream
Changes in the Arctic can perturb midlatitude weather in such regions as the United States, Europe and China because temperature differences between the two zones drive the jet stream, the fast-moving river of air that circles the Northern Hemisphere, explained lead study author Qiuhong Tang, an atmospheric scientist at the Institute of Geographic Sciences and Natural Resources Research in Beijing.
"As the high latitudes warm faster than the midlatitudes because of amplifying effects of melting ice, the west-to-east jet-stream wind is weakened," Tang told LiveScience in an email interview. "Consequently, the atmospheric circulation change tends to favor more persistent weather systems and a higher likelihood of summer weather extremes."
In the past 30 years, the amount of summer sea ice covering the Arctic Ocean shrank by 8 percent per decade. The total area of summer ice lost would cover 40 percent of the lower 48 U.S. states. The amount of high-latitude snow cover during June waned even more quickly, at almost 18 percent per decade. Ultimately, these two measures mean the Arctic is warmer when summer starts, because the open ocean and meltwater on ice absorb more of the sun's rays than ice does.
When the temperature difference between the Arctic and midlatitudes lessens, the jet stream starts to take swooping swings on its journey around the globe, like a river flowing over a flat plain, Francis said. The ridges and troughs in the jet stream create stagnating weather systems, such as high-pressure heat waves, that are stuck in the swoops. The Arctic sea ice effects were even blamed for Hurricane Sandy's swing toward the Mid-Atlantic Coast.
The new results add to earlier studies by Francis and her colleagues showing a similar link between Arctic climate change and extreme winter weather, also driven by a wild jet stream pattern.
"This study pounds another nail in the framework connecting human-caused climate change with more frequent extreme weather," Francis said in an email interview.
Climate debate
However, Francis and Tang said that other factors, such as natural climate cycles like El Niño, could also contribute to the increasing numbers of devastating droughts, heat waves and bitter cold snaps plaguing the midlatitudes.
"The results of this study are based on statistical relationships; thus, [a] cause-and-effect [relationship] cannot be definitively identified," Francis said. "That said, the relationships we reveal are consistent with expectations and with the results of other recent studies, providing confidence that Arctic changes are contributing to increasing extreme weather events in midlatitudes."
Scientific opinion is still divided on whether the rollicking jet stream is truly linked to climate change or may simply be the result of natural variability, according to a commentary also published today in Nature Climate Change by James Overland, a climate scientist at the National Oceanic and Atmospheric Association's Pacific Marine Environmental Laboratory in Seattle. Part of the problem comes from the paucity of data, because scientists have only 30 years of Arctic observations to use in their analysis.
"Skeptics remain unconvinced that Arctic/midlatitude linkages are proven, and this work will do little to change their viewpoint," Overland wrote. "There is insufficient data to formally resolve the debate on whether these events are purely random or if their occurrence is enhanced by Arctic changes."
However, "the potential for an Arctic influence remains high, given the outlook for further declines in summer sea ice and snow cover over the next few decades, and Arctic amplification of global temperatures," Overland added. "Expected responses from Arctic impacts may be emerging."
Email Becky Oskin or follow her @beckyoskin. Follow us @livescience, Facebook & Google+. Original article on LiveScience.

http://news.yahoo.com/shrinking-arctic-sea-ice-means-scorching-us-summers-205420601.html
 
how much arctic warming? and for how long?
From the 1920s to the 1940s, the Artic experienced significant warming that is comparable to the recent 30-year warming. The former warming was concentrated mostly in high latitudes, in contrast to the recent 30-year warming, which has occurred in all latitudes. Several explanations have been proposed; however, one of these proposed explanations, single external forcing, which could once explain the global average, failed to explain the early 20th century scenario. A second possible explanation was internal atmospheric variability with low frequency. Another candidate for the explanation was still forcing by black carbon deposited on snow and ice surfaces. The answer is most likely to be a combination of intrinsic internal natural climate variability and positive feedbacks that amplified the radiative and atmospheric forcing. We must continue our study by discovering historical data, analyzing ice cores, reanalyzing the Arctic system together with long-term reanalysis dating back to the 1880s, and also determine the contributions of each factor.

http://www.sciencedirect.com/science/article/pii/S1873965211000053
 
From the 1920s to the 1940s, the Artic experienced significant warming that is comparable to the recent 30-year warming. The former warming was concentrated mostly in high latitudes, in contrast to the recent 30-year warming, which has occurred in all latitudes. Several explanations have been proposed; however, one of these proposed explanations, single external forcing, which could once explain the global average, failed to explain the early 20th century scenario. A second possible explanation was internal atmospheric variability with low frequency. Another candidate for the explanation was still forcing by black carbon deposited on snow and ice surfaces. The answer is most likely to be a combination of intrinsic internal natural climate variability and positive feedbacks that amplified the radiative and atmospheric forcing. We must continue our study by discovering historical data, analyzing ice cores, reanalyzing the Arctic system together with long-term reanalysis dating back to the 1880s, and also determine the contributions of each factor.

http://www.sciencedirect.com/science/article/pii/S1873965211000053
your reply sounds

good but adds up to you and the others do not know the answer. the current warming with accompanying greater ice melt is still not completely understood. the problem is the negative impact on life in the area. the current melt is more serious than the previous melt.

while variations in solar output can explain some of the changes, no one seems to know what the increase in atmospheric carbon is doing and when the increases will start to severely change our weather patterns more than has already been noted. while the oceans can absorb a great deal of heat and carbon, at some point their ability to absorb what we are dumping into the atmosphere will cease or diminish to the point that we will be screwed.

since we do not know when that will occur and our climate models are inadequate it is likely that disaster will follow one of these years.

oh well
 
Back
Top