Low oxygen levels recorded along the
Gulf Coast of
North America have led to reproductive problems in fish involving decreased size of reproductive organs, low egg counts and lack of spawning.
In a study of the Gulf
killifish by the
Southeastern Louisiana University done in three bays along the Gulf Coast, fish living in bays where the oxygen levels in the water dropped to 1 to 2 parts per million (ppm) for three or more hours per day were found to have smaller
reproductive organs. The male gonads were 34% to 50% as large as males of similar size in bays where the oxygen levels were normal (6 to 8 ppm). Females were found to have ovaries that were half as large as those in normal oxygen levels. The number of eggs in females living in hypoxic waters were only one-seventh the number of eggs in fish living in normal oxygen levels. (Landry, et al., 2004)
Fish raised in laboratory-created hypoxic conditions showed extremely low
sex hormone concentrations and increased elevation of activity in two
genes triggered by the hypoxia-inductile factor (HIF)
protein. Under hypoxic conditions, HIF pairs with another protein, ARNT. The two then bind to DNA in cells, activating genes in those cells.
Under normal oxygen conditions, ARNT combines with estrogen to activate genes. Hypoxic cells
in vitro did not react to estrogen placed in the tube. HIF appears to render ARNT unavailable to interact with estrogen, providing a mechanism by which hypoxic conditions alter reproduction in fish. (Johanning, et al., 2004)
It might be expected that fish would flee this potential suffocation, but they are often quickly rendered unconscious and doomed. Slow moving bottom-dwelling creatures like clams, lobsters and oysters are unable to escape. All colonial animals are extinguished. The normal re-mineralization and recycling that occurs among
benthic life-forms is stifled.